Fixed-Parameter Tractable Optimization Under DNNF Constraints
نویسندگان
چکیده
Minimizing a cost function under a set of combinatorial constraints is a fundamental, yet challenging problem in AI. Fortunately, in various real-world applications, the set of constraints describing the problem structure is much less susceptible to change over time than the cost function capturing user’s preferences. In such situations, compiling the set of feasible solutions during an offline step can make sense, especially when the target compilation language renders computationally easier the generation of optimal solutions for cost functions supplied “on the fly”, during the online step. In this paper, the focus is laid on Boolean constraints compiled into DNNF representations. We study the complexity of the minimization problem for several families of cost functions subject to DNNF constraints. Beyond linear minimization which is already known to be tractable in the DNNF language, we show that both quadratic minimization and submodular minization are fixed-parameter tractable for various subsets of DNNF. In particular, the fixed-parameter tractability of constrained submodular minimization is established using a natural parameter capturing the structural dissimilarity between the submodular cost function and the DNNF representation.
منابع مشابه
On the tractable counting of theory models and its application to belief revision and truth maintenance
We introduced decomposable negation normal form (DNNF) recently as a tractable form of propositional theories, and provided a number of powerful logical operations that can be performed on it in polynomial time. We also presented an algorithm for compiling any conjunctive normal form (CNF) into DNNF and provided a structure-based guarantee on its space and time complexity. We present in this pa...
متن کاملFixed-Parameter Tractability of almost CSP Problem with Decisive Relations
Let I be an instance of binary boolean CSP. Consider the problem of deciding whether one can remove at most k constraints of I such that the remaining constraints are satisfiable. We call it the Almost CSP problem. This problem is NP-complete and we study it from the point of view of parameterized complexity where k is the parameter. Two special cases have been studied: when the constraints are...
متن کاملParameterizing above or below guaranteed values
We consider new parameterizations of NP-optimization problems that have nontrivial lower and/or upper bounds on their optimum solution size. The natural parameter, we argue, is the quantity above the lower bound or below the upper bound. We show that for every problem in MAX SNP, the optimum value is bounded below by an unbounded function of the input-size, and that the above-guarantee paramete...
متن کاملExplaining Propagators for s-DNNF Circuits
Smooth decomposable negation normal form (s-DNNF) circuits are a compact form of representing many Boolean functions, that permit linear time satisfiability checking. Given a constraint defined by an s-DNNF circuit, we can create a propagator for the constraint by decomposing the circuit using a Tseitin transformation. But this introduces many additional Boolean variables, and hides the structu...
متن کاملThe Parameterized Complexity of Approximate Inference in Bayesian Networks
Computing posterior and marginal probabilities constitutes the backbone of almost all inferences in Bayesian networks. These computations are known to be intractable in general, both to compute exactly and to approximate by sampling algorithms. While it is well known under what constraints exact computation can be rendered tractable (viz., bounding tree-width of the moralized network and boundi...
متن کامل